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Some general results are derived for the efficiency of energy absorption of a system of 
uniform oscillatory surface pressure distributions. The results, which are based on 
classical linear water-wave theory, show the close analogies which exist with theories 
for systems of absorbing oscillatory rigid bodiw and a number of new reciprocal 
relations for pressure distributions are suggested and proved. Some simple examples 
illustrating the general results are given and compared with the corresponding results 
for rigid bodies. 

1. Introduction 
A number of wave-energy devices currently being considered both in the U.K. and 

elsewhere base their mode of operation on the following principle. A region of the free 
surface is surrounded by a rigid hollow floating structure, open at the immersed 
bottom end, which traps a volume of air above this internal free surface. The incident 
wave field cauaes a rise and fall of the free surface and the volume of air is driven back 
and forth at high speed through a constriction containing an air turbine feeding a 
generator for direct conversion to electricity. At model scale the air turbine is re- 
placed by a simple orifice plate - the size of the orifice being adjusted to attempt to 
match the full-scale turbine characteristics. Examples of devices which operate on 
this principle are the C.E.G.B. device (Count et al. 1981), the buoy being developed 
by Queens University, Belfast, and the Kaimei device being tested in Japan. Descrip- 
tions of these last two devices can be found in Quarrel1 (1978). 

In  an attempt to model the hydrodynamics of such devices, authors have adapted 
theory developed for wave-energy devices involving rigid oscillating bodies and 
described, for example, in Evans (1981). This usually involves replacing the free 
surface by a weightless piston and requires the determination of the added mass and 
damping of the piston. Examples of this approach, which neglects any spatial varia- 
tion in the internal free surface caused by the surface pressure, include Evans (1978), 
who considers the resonant oscillations of a narrow water column in an immersed open 
vertical tube, and Count et al. (1981) who compute the hydrodynamical coefficients 
for the C.E.G.B. wave energy device, which can be aptly described as a half-open 
matchbox floating upside-down on the water surface. 
This paper presents a more accurate yet simpler theory for such devices which 

correctly allows for the applied surface pressure and the consequent spatial variation 
of the internal free surface. 

A similar approach to the two-dimensional wave-energy problem has been made by 
Falczo & Sarmento (1980), extending work by Stoker (1957). The present work 
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generalizes their results to arbitrary pressure distributions in both two and three 
dimensions. In a different context Ogilvie (1969) has also considered some two- 
dimensional problems involving pressure fields. He obtains results which he uses to 
predict the motion of a long air-cushion vehicle with side walls. He also solves ex- 
plicitly the difficult problem of a uniform pressure field over a segment of the surface 
bounded by two equally submerged vertical plates. No computations of the solution 
are made. 

In $2 the general theory is developed and results for the hypothetical maximum 
power absorption of an arbitrary system of energy-absorbing pressure distributions 
are derived. The close resemblance to corresponding results from rigid-body theory 
suggests various reciprocal relations between certain radiation and scattering prob- 
lems which are duly proved in the appendix. Simple special cases which illustrate the 
general theory are presented in both $2 and $3 where in addition more practical 
considerations provide conditions for resonance. In  $ 4 a comparison with the rigid- 
body resonance conditions is made and curves of the maximum absorption width 
in each case for a single circular surface pressure or rigid disk are presented, 

2. Formulation 
To fix ideas we consider a fixed structure open at the bottom end, and closed at  the 

top end, which intersects the free surface, trapping a volume of air in a series of 
separate sections each having its own internal free surface. The effect of an incident 
wave train is to cause the internal free surfaces to oscillate at  the same frequency as 
the incident wave, driving their air volumes back and forth through constrictions 
containing turbines. It is assumed that the compressibility of the air is small so that 
the air pressure at each turbine is the same as the uniformly distributed pressure just 
above the corresponding free surface. The total mean rate of doing work will be the 
sum of time averages of the product of these pressures and the volume flows through 
the turbines, which in turn is the same as the product of the spatial average of the 
vertical velocity of each internal free surface and its area. In the present work we 
assume that the turbine characteristics are linear so that the pressure drop across the 
turbine is proportional to the volume flow though it. We take Cartesian co-ordinates 
with x, y horizontal, and z vertically upwards, with z = 0 the undisturbed free surface. 

Under the assumptions of linear water-wave theory, we can construct a velocity 
potential a)@, y, z, t )  for the problem satisfying 

Vaa) = 0 in the fluid, (2.1) 

where S, is the ith internal free surface, S, is the external free surface, and q(x,  y, t) 
is the surface elevation satisfying 

= 0 on rigid boundaries, S,. 
an 
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Here P,(t) is the, as yet unknown, simple harmonic pressure on S,. The effect of the 
structure is partially to scatter the incident waves so that, at large distances, in 
addition to the incident wave potential, there exists a wave field travelling outwards 
away from the structure. 

The incident wave potential can be described by 

@,,(x, y , z , t )  = g A w - l e k z c o s ( k x c o s ~ + k y s i n ~ - w t ) ,  (2.5) 

where k = wa/g, and the incident wave-train makes an angle 1 with the positive x axis. 
Equations (2.2) and (2.3) can be combined to give 

for simple harmonic motions. 
It is convenient to write 

where denotes a scattered 

@ = @ d + Y ,  (2.7) 

plus incident potential satisfying (2.1), (2.4), and (2.6) 
with P,(t) = 0 and Y is a radiation potential satisfying (2.1), (2.4) and (2.6) but which 
behaves like outgoing waves at large distances. It is clear then that 0 as given by 
(2.7) will satisfy all the conditions of the problem. 

Now the volume flow rate across S, is just 

= Qdi( t )  + Q&), say. 

The total rate of working of the pressure forces across all S, is then 

5 W )  (&a#) +&At) )  = PT(Qd+ Q), (2.8) 
i= 1 

where P, Qd, Q, are column vectors whose ith components are Pi, Qdi and Q, respec- 
tively. Now the simple harmonic pressure Pi(t) at S, alone will give rise to volume 
flow rates Qr(t) on 8, (j = 1, ..., N), which are also simple harmonic in time. We make 
the arbitrary but convenient decomposition 

Q = - A P - B P  (2.9) 

where A, B are N x N real symmetric matrices, with B a damping coefficient, positive 
definite in general, which can, in principle, be determined. The decomposition (2.9) 
can be compared to the usual decomposition of the force on an oscillating body in 
terms of added-mass and damping matrices. 

It is convenient at this stage to introduce time-independent quantities. We write 

{@, y,  P, Q, Qd} = g{#, #a, @, P, Q, Qd} e-'ot. 

Then averaging over a period, the mean rate of working of the pressure forces becomes 

w = 9 r n * ( Q d  + 4. (2.10) 

Here * denotes conjugate transpose. 
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In  terms of time-independent quantities, (2.9) may be written 

q = -Zp,  where Z = B-iwA (2.11) 

W = b@P*q,-+P*BP, (2.12) 

is a complex admittance. Then (2.10) becomes 

where we note that A does not appear. The expression (2.12) can be re-written in the 
form 

w = QG B-%- 4(P - 4B-l4d) *B(P - WlSd) .  (2.13) 

It follows that, provided B-l exists, 

when 
(2.14) 

(2.15) 

The maximum mean power, then, would be achieved by ensuring that the pressure at, 
say, S, is a linear combination of the volume fluxes induced at each S,, j = 1, . . . , N ,  due 
to the incident plus scattered wave alone, the constants of proportionality being such 
that (2.15) is satisfied. The results (2.14) and (2.15) are identical with the corres- 
ponding expressions obtained for a system of independently oscillating absorbing 
bodies in a regular incident wave-train. The roles of pressure and incident wave- 
induced volume flux are then replaced by velocity and incident-wave exciting force 
on the bodies. 

Now in practice i t  may be easier to control the volume flux through the turbines 
than the pressure drop across. We shall assume a linear relation between them of the 
form 

q + q d  = +AP, (2.16) 

where A is an N x N matrix. Notice that the sign in front of A is taken to be positive 
since, in contrast to (2.1 l), the pressure forces and volume fluxes are both measured 
vertically upwards. This, when used in conjunction with (2.11), gives 

(A+Z)P  = +qd, 

A = Z  
which from (2.15) shows that 

(2.17) 

(2.18) 

for maximum power. Here a bar denotes complex conjugate. In fact (2.13) can be 
written, after some manipulation, 

where 
W = #q${B-l- E*B-'E}qd, 

E = (Z-A) (A+Z)-l, 

(2.19) 

(2.20) 

and (2.17) has been used. This form exhibits clearly the impedance matching con- 
dition required for optimality. 

Unfortunately, in reality, unless the turbines are linked, each turbine will have its 
own pressure/flow characteristic, here assumed linear, so that A will be a diagonal 
matrix whereas both B and A are full matrices. Furthermore, unless the pump 
characteristics exhibit a phase lag between pressure and volume flow, the elements of 
A will be real and positive. Thus in a particular case the expression (2.19) needs to be 
maximized as a function of the positive turbine characteristics represented by the 
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non-zero elements hi of A. Even in the simplest case when all A's are identical there 
does not appear any obvious analytical method of maximizing (2.19) and numerical 
optimization must be used. 

The way to proceed in a particular problem is now clear. First the complex ad- 
mittance matrix Z must be determined, either theoretically or experimentally. This 
involves finding the volume flux induced across all the S, due to a uniform pressure 
distribution over each S, in turn. Next q,, the induced volume flux across each S, due 
to the diffracted potential alone, must be determined and finally the mean power 
absorbed can be obtained from (2.19) in terms of the (assumed linear) turbine charac- 
teristics modelled by the matrix A. 

Before looking at specific examples it is of interest to consider the theoretical maxi- 
mum power under the assumption that the impedances can be matched exactly. In  
other words we assume there is a control mechanism which ensures that A = z' so 
that the volume flux across S, is a predetermined linear combination of the pressures 
at each S,. In this case 

a result having a parallel in the theory for systems of independently oscillating 
absorbing rigid bodies (Evans 1979; Falnes 1980), where qd is replaced by the exciting 
force vector on the system of bodies. 

Now it is shown in the appendix equation (A 27) that the elements of B are related 
to the elements of the vector qd so that it is only necessary to determine the induced 
volume flux across each 8, due to the diffracted wave potential as in (A 17) in order 
to obtain the elements of the damping matrix B and consequently Wmax from (2.21). 
Now the diffracted potential arises due to the presence of any fixed rigid structure 
and is independent of the pressure distributions. Thus and hence qd, may be deter- 
mined using existing diffraction programs common in ship hydrodynamic theory. 

A further simplification is possible if it can be assumed that the fixed immersed 
part of the absorber is of shallow draught. Then the only hydrodynamical effect of the 
structure is to limit the size and shape of the internal free surfaces S,. But now the 
evaluation of qd is trivial since it requires only the integration of the incident potential 
over S, since the scattered potential can be neglected. 

As an example of the general theory we consider just a single internal free surface 
S, so that 

where from (A 1) 

Wmax = &: B-lqd, (2.21) 

Wmsx(P) = *IQdlS/B, (2.22) 

(2.23) 

If S, and 8, are axisymmetric so that qd is independent of angle of incidence, we 
obtain 

(2.24) 

where Z(P) is defined to be a capture width for the device and h is the incident wave- 
length. This result is identical with that obtained for axisymmetric single absorbing 
bodies in heave (Budal & Falnes 19'15; Evans 1976; Newman 1976). 

For non-axisymmetric pressure distributions having zero draft, further progress 
can still be made using (2.23). 
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FIGURE 1. Variation of maximum capture width ratio, 1,,/2b, with angle of incidence /?. for 
regular waves approaching a rectangular absorbing surface pressure distribution, for different 
values of dimensionless wavenumber ka and b/a  = 2. The dotted lines show the axisymmetric 
values (2kb)-l. 

We have from (2.22)-(2.24) 

Consider a single rectangular pressure distribution with zero draught, occupying 
S,: 1x1 < a, IyI < b. Then 

where 

so that 

where 

#o = gAwl  exp {ikx cos /?+ i ky  sin p + kz}, 

q d ( p )  = 4gAw-l k-"), 

f (p)  = sin (ka cos p)  sin (kb sin p)/sin p cos p. (2.26) 

This simple expression enables an estimate to be made of the influence of shape and 
orientation of a single rectangular pressure distribution on the maximum power 
capture width. 

Notice that from (2.25) 

(2.27) 

revealing the relative effectiveness of a pressure surface in beam and head seas. 
Results based on the computation of equations (2.25)-(2.27) are given in figures 



Wave-power absorption wing oscillating pressure distributions 487 

1.0 1 I I 

I :  

t - 
5 10 

b la 

, 
5 

FIGURE 2. Variation of maximum capture width ratio, 1,,/2b, with aspect ratio, b/a,  for 
regular waves approaching a rectangular absorbing surface pressure distribution, for different 
values of dimensionless wavenumber ka. 

1 and 2. In figure 1 the capture width, non-dimensionalized with respect to the width 
of the device, 2b, is sketched as a function of incident wave angle, for the case of 
b/a = 2, and for different values of Ica. Not shown is the case b = a, where the varia- 
tion of 1ma,/2b from the axisymmetric result (2.24) is remarkably small with the 
optimum angle of incidence being /? = in when the wave crests are parallel to a 
diagonal of the square. As might be expected the fluctuations of 1 4 2 b  with /3 are 
larger for larger ku since the rectangular shape has more influence on the shorter 
waves. For instance an axisymmetric pressure distribution has a maximum capture 
width of about of a diameter in waves of about 8 times the diameter (ku = 0.4). 
For a rectangular distribution of the same width but half the length (b/u = 2) the 
increase in capture width in beam seas, /? = O", is only about 10 %. On the other hand 
for waves of 4 times the diameter (ka = 0.8) the capture width increases by about 
60% from pb of a diameter to over Q of the width of the device. Because of the 
form of (2.26) we find that the opposite effect occurs in head seas, /? = in, where the 
rectangular distribution (with b/a+ 1) is always less efficient than the axisymmetric 
distribution. Just how the capture width ratio in beam seas depends upon the aspect 
ratio @/a) of the rectangular distribution is shown in figure 2 for different values of 
ku. As might be expected, as b/u +oc) the capture width ratio approaches 0.5, being 
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the result for the efficiency of power absorption by a two-dimensional distribution 
(see equation (2.29)). 

Results appropriate to two-dimensional pressure distributions can be obtained by 
returning to (2.21) and using the results (A 32), (A 33) which give 

(2.28) 

Again, as for three-dimensional pressure distributions, in order to estimate the 
maximum efficiency, it is only necessary to solve a single diffraction problem for the 
scattering of a wave-train by the rigid part of the system of pressure surfaces. Once 
this is determined, qdm follows from (A 17) and the maximum power absorbed from 
(2.21). 

Considerable simplification follows from considering the case of a single pressure 
surface, and we obtain an eficiency of power absorption 

qmax = wmax/Pw = 1 ad(o)I2/(( qd(0)lz + I nd(n)lz)* (2.29) 

Here Wmax is to be interpreted as the maximum mean power absorbed per unit width 
of the pressure distribution. 

For waves approaching from x = +GO the argument of the numerator must be 
replaced by n. An alternative expression is 

qmax(0) = 1/ (1+ lf+/f-12) (2.30) 

(where f* are defined by (A 28)), showing, just as for the rigid wave-energy absorber 
in two dimensions, that a good unidirectional wave generator (in the direction from 
where the incident wave comes) is a good absorber. 

Again from (2.30) it follows that for a pressure distribution which is symmetric 
about the x-axis, so that f+ = f-, the maximum efficiency is 4, whilst from (2.30) for 
an arbitrary single pressure distribution 

qmax( 0) + qmax(m) = 1 * 

For the next simplest case of two pressure distributions (N = 2), substitution of 
(2.28) into (2.21) gives, after some algebra, 

qmax(0) = qmax(n) = 1 ,  

showing that all the incident wave-energy can be absorbed. This follows provided 

(2.31) 

which is the condition which ensures that B-l exists. From (A 34) equation (2.31) is 

f t f i  *fi'fi-, 
seen to be equivalent to 

a condition occurring in the rigid-body case in both Srokosz & Evans (1979) and Count 
& Jefferys (1980) who point out that this excludes both modes being either symmetric 
(f$, = f;) or anti-symmetric (I$ = - f;;;). 

If N > 2 the formula (2.14) no longer applies since B is automatically singular. 
This follows since B can be written 

(2.32) 
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showing that B can be of rank 2 at most. This point is also made by Count & Jefferys 
(1980) in the rigid-body context. 

The form (2.32) provides an alternative expression to (2.12) for the mean power, 
namely 

w = W P * q , - -  { I P * Q d ( 4 1 2 +  IP*%(0)lS) (2.33) 

which is analogous to that derived by Newman (1976), equation (6 la)  for the case of 
a rigid body oscillating in a number of modes. 

It seems likely that the maximum absorption efficiency for N > 2 is also unity but 
a general proof from (2.33) is not yet available. It is clear, however, that the optimal 
values for p will not be unique. 

1 
1 6Pw 

3. Conditions for resonance 
The maximum absorbed power has been shown to  be given by (2.21). However, this 

can only be achieved if we can arrange that A = z'. In practice, i t  is unlikely that the 
matrix A will be other than real and diagonal with positive elements. We consider 
the implications of this for the case of a single internal free surface. 

We have 

For given A,  B, as functions of w h / g ,  

with 

For an axisymmetric pressure distribution and associated structure, from (A 27) 

so that 

= 2{ 1 + (1 + w2A2/B2)+}-1 

qmax = {i + (1 + ~ 2 A 2 / / ~ 2 ) * ) - 1 .  

(3.5) 

whilst, for a two-dimensional symmetric pressure distribution, 

(3.6) 

It is clearly of interest to ascertain whether there are values of &a/g for which A 
vanishes, corresponding to the induced volume flux downwards across the surface 
being exactly in phase with the applied pressure. Two simple examples will be con- 
sidered for which explicit solutions can be obtained. 

(a)  The two-dimensional wave field created by a uniform simple harmonic pressure 
over the finite interval 1x1 < a of the x-axis representing the free surface was fist 
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FIQWRE 3. Variation of the function A(ka), defined by equation (3.10), with dimensionless 
wavenumber ka, for a circular uniform oscillatory surface pressure distribution of radius a. 

solved by Stoker (1957) and subsequently considered by Ogilvie (1969) and FalcLo & 
Sarmento (1980).  For this simple problem we have, from (A 32) ,  (A 33) 

BW = I Q ~ I ~ I ~ P ~ ,  
and it is easily shown that 

qd = 2gAw-1 sin ka, 

since there is no scattered potential. 
The expression for A(ka) is more complicated, involving the special functions Ci 

and Si. However FalciXo & Sarmento (1980) have shown, and it can be confirmed 
from Ogilvie (1969),  figure 15, that A(ka) = 0 for lc4z + 1.3 corresponding to a strip 
half-width of about one-fifth of a wavelength. Equation (3 .6)  now shows that, as ka 
increases from zero, the maximum efficiency of 0.5 is achieved a t  about ka = 1.3, 
when A(ku) = 0, but the efficiency drops to zero at  subsequent values of ka for which 
B ( h )  = 0, namely ka = nm, n = 1 ,2 ,  ... . Curves showing the variation of qmax with 
ku are given by Falciio & Sarmento (1980).  

(b) As a further example we consider the axisymmetric extension of the above to a 
uniform oscillatory pressure distribution over a disk of radius a on the free surface 
in deep water. The resulting three-dimensional axisymmetric wave field can be deter- 
mined explicitly either by using Green's theorem in conjunction with the funda- 
mental wave source potential in three dimensions or, more simply, by use of Hankel 
transforms. 

It is found that 
B( ka) = 27r2~~wp-'g-~J3 ka) , (3 .9)  

whilst 

A ( h )  = - 2ma2p-lg-l nJ , (h)  Y,(ku) + 2n-lka K1(u) du) . (3.1 0) 
0 U2+kaa2 

Here J,, Y,, I,, K ,  are Bessel functions in the usual notation. A derivation of this 
result together with extensions t>o finite depth and surface-piercing ducts can be found 
in Thomas (1981).  
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ka 

FIGURE 4. Variation of klmU with dimensionless wavenumber ka, for a circular absorbing 
oscillatory surface pressure distribution (solid line) and a circular absorbing oscillatory rigid 
disk (dotted line). 

FIGUSE 6. Variation of dimensionless capture width ratio 1-/2a with dimensiodess wave- 
number for a circular absorbing oscillatory surface pressure distribution (solid line) and a 
circular absorbing oscillatory rigid disk (dotted line). Also shown is the theoretical optimum 
(2k4-l  in each case. 

A graph of the expression in curly brackets in (3.10) against Ica is shown in figure 3. 
It appears that A ( h )  has just seven zeros, the first of which is ka = 1.96 corresponding 
to a disk radius of about three tenths of a wavelength. The first zero of B(ka) occurs at 

Figure 4 shows the variation of kl,,, with Ica whilst figure 5 shows the variation of 
the capture width non-dimensionalized with respect to the disk diameter. It can be 

h = 3-83. 
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seen that the maximum value of klmax occurs at the first zero of A(ka) whilst klma, is 
reduced to zero at  ka = 3.83' corresponding to the first zero of B(ku). Subsequent 
zeros of A(ka), B(ka) give rise to oscillatory behaviour of klmax as ka increases. It is 
perhaps more illuminating to look at  the capture width ratio ZmaX/2a as it varies 
with ka. The effect of the term involving A(ka) is to give an absolute maximum to the 
capture width ratio of about 0.4 in the range of interest a t  ka + 0.7 or a wavelength 
to diameter ratio of about 5.  Also shown is the curve (2ka)-' obtained from (2.24) by 
assuming that resonance can be achieved at  all frequencies. As expected the only 
point of contact with the Zmax/2a curve is at the first zero of A ( k a ) .  

4. Comparison with a rigid plate model 
Previous treatments of wave-energy devices which are based on the idea of forcing 

a trapped air volume at  the water surface through a turbine, have modelled the free- 
surface by a rigid surface condition of prescribed vertical velocity. See, for example, 
Count et al. (1981).  It is argued that for long waves a t  least (k+O) ,  the pressure 
condition (2 .6)  reduces to the rigid surface condition. However, to be consistent, the 
same approximation should be made over the entire free surface, in which case the 
wave element of the problem is lost. 

It is of interest to look a t  the differences in the results of the two approaches. We 
consider only a single symmetric device consisting of either a rigid surface plate or a 
pressure distribution. In  both cases the maximum efficiency is 4 in two dimensions, 
or the maximum capture width is k-l for axisymmetric devices. 

The actual capture width for a circular absorbing plate can be written (Evans 1976) 
in a form precisely analogous to (3 .4 ) )  (3.5) where now h is the positive velocity- 
proportional damping coefficient connecting the vertical externally applied opposing 
force on the disk and the vertical velocity of the disk. Furthermore 

A ( w )  = m + a,,(@) - c w 2 ,  (4 .1)  

where m is the mass of the disk, a3,(w) its frequency-dependent heave added mass, and 
c = na2pg is the buoyancy-restoring coefficient under the assumption that the disk on 
the surface is part of a finite-length circular cylinder extending above the surface. 
The coefficient B(w) = b,,(w), the frequency-dependent damping coefficient for the 
forced oscillatory heave motion of the disk with unit velocity amplitude. 

Now since the disk is assumed to lie on the free surface its mass can be ignored 
compared to its added mass, which in turn can be non-dimensionalized by writing 
a,,(w) = 2npa3,u3(w) so that 

A(w) = 2npa3{p,(U)- (2ka)-'}. (4 .2)  

Similarly B(w) = 2npa3wA,(w) where A,(@) is the non-dimensional damping co- 
efficient. 

The heave added mass and damping coefficients for a circular dock in the surface 
have been determined by McCamy (1961),  although there appears to be a typo- 
graphical error in the labelling of the ordinates in his figures 6 and 7 ;  the asymptotic 
result ,us N 2 / 3 n  as ka+m together with other information suggests that the values 
given for ,us and A, need to be reduced by a factor 2n. With this correction, it is found 
that A ( w )  vanishes once only a t  ka = 2.1 whilst B(w) is always positive. The effect of 
these differences on klmax and lmax/2a are shown by the dotted lines in figures 4 and 5.  



Wave-power absorption using oscillating pressure distributions 493 

It can be seen from figure 4 that, in the range 0 < ka < 4 which encompasses the 
range of practical interest for wave-energy devices, the major difference in klms, 
occurs for ka > 2 where the pressuIe distribution values begin to fall, reaching zero 
at the value of ka = 3.82 corresponding to the first zero of B(ka) for this case. Since 
B(ka) is never zero for the rigid surface dock, no such fall in klmsx occurs in this case. 
The same is true for the capture width ratios in figure 5 ;  in fact over the range of 
wavelength/diameter ratios from 1.5 to 4 the differences in the two capture width 
ratios are small. 

Similar differences occur in the case of the two-dimensional strip also considered 
by McCamy (1961). In this case c = Zap9 in (4.1) and A(@) vanishes for 
ka( = d a / g )  + 1.42 compared with the value 1.3 predicted by Falc5o & Sarmento 
(1980). 

5. Conclusion 
A number of problems relating to the absorption of wave energy by oscillatory 

uniform surface pressure distributions have been considered. It has been shown, using 
linearized water-wave theory, that general expressions can be derived for the mean 
power absorbed by an arbitrary system of pressure distributions in terms of: an 
admittance matrix relating volume flux to applied pressure for the system, the 
induced volume flux due to the incident and scattered potential alone, and the 
(wsumed linear) pressurevolume flux characteristics of the power-take-off mechan- 
ism. 

It has been further shown that under perfect impedance matching the maximum 
mean power absorbed can be determined solely by solving a linear wave-diffraction 
problem common in ship hydrodynamic theory without reference to pressure dis- 
tributions. This follows from new results relating the required damping coefficients 
for given pressure distributions to the induced volume flux arising from the diffraction 
problem. Most of these results are derived in the appendix. 

In the more likely case of imperfect matching, it has been shown that, for single 
pressure distributions in either two or three dimensions, conditions for resonance 
exist which attach a size of the pressure distribution to the incident wavelength. A 
comparison with the resonant conditions for comparable rigid body wave-energy 
devices shows that only slight differences occur for values of ka within the range of 
practical interest, suggesting that the use of such rigid body models for devices which 
depend upon the surface pressure idea for their operation will provide satisfactory 
results. For larger ku, however, significant differences do occur and this will be of 
importance in nonlinear problems where high-frequency Fourier components are 
considered. In general, however, there can be little justification in future for using 
rigid-body theory rather than the present theory for such devices, since in addition 
to more accurately describing the physical situation, it also has the advantage of 
producing simpler boundary -value problems to be solved. 

The present paper only attempts to open up the theory of energy-absorbing pres- 
sure distributions and there are clearly a number of problems which need to  be 
tackled. The greatest drawback to the present theory is the assumption of a linear 
turbine characteristic at each pressure distribution. In fact it is more likely to be 
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quadratic in form (Fry & Jefferys 1979). Again the assumption of incompressibility 
of the enclosed air volume needs to be examined. Both these points have been des- 
cribed by Falcgo & Sarmento (1980) and it appears likely that, using appropriate 
Fourier series expansions, they could be incorporated into the present general theory. 

A further direction of study would be to apply the general theory to a typical 
Kaimei device to obtain estimates of optimum capture widths and chamber pressures. 
It would be more sensible, perhaps, to delay such an application until the theory has 
been extended to include genuine nonlinear turbine characteristics. 

The author wishes to acknowledge numerous useful discussions with Dr G. P. 
Thomas and Mr J. R. Thomas, both from the University of Bristol, and also to thank 
the latter for his help in computing the results presented. This work forms part of a 
continuing research programme supported by S.E.R.C. grant GR/B76720. 

Appendix. Reciprocal relations involving pressure distributions 

absorbing bodies, that the relation 
The form of (2.14) suggests, by analogy with the theory for arrays of rigid energy- 

holds between the elements of thedamping matrix B and the elements of the diffracted 
wave induced volume flux vector q,. In addition to (A 1) further relations are derived 
in this appendix appropriate to free-surface pressure distributions. The method of 
derivation follows closely that used by Newman (1976) to obtain the corresponding 
rigid-body results. They are presented in some detail here as they appear to be new 
and they may have applications in other contexts such as the study of air-cushion 
vehicles. 

Referring to the main body of the paper, the potential $(x, y, z )  satisfies 

Q2$ = 0 in the fluid; (A 2) 

(A 3) a$/an = 0 on SB, the fixed rigid boundary; 

iup-lq-lp, on Xi, the ith internal free surface, (A 4) 

az 0 on S,, the external free surface. (A 6) 
--k$ = 

At large distances $ behaves like an outgoing wave potential. We have (A 6) 

where 

Let 

the time-independent, complex, volume flux across S,, and, from (2.1 1), 

N 

i=l 
(A 8) p. z = - X ZijPj, 

N 
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where the $, satisfy (A 2), (A 3), (A 6) and 

It follows from (A 7), (A 8) ,  (A 10) that 

I;, = - iUp-ig-1 

so that, in particular, 

91 w * / a z w  = PSA,. 
si 

Finally, we assume that 

-f.(0)e*kRekz/(kR)* as R+m, R = (xs+yB)*. 

The diffraction potential is 

where 
d a  = d o  + $89 

do = gA0-l exp {ik(x cos + y sin /3) + kz} 
satisfying &b,/az = 0 on S,, the fixed rigid surfaces, and 

I 

Also 
$8 -f,(e)exp{ikR+kz}/(kR)* as R + m  

and both do and q& satisfy (A 5) .  
Now if d ,  $ are any two sufficiently regular harmonic functions in a given region, 

where the surface integral is taken over any closed surface containing the region. 
In  particular, consider the surface integral 

where the integration is over both the ith and j t h  internal free surface, and also over 
the rigid boundary S,. Now the surface of integration in (A 20) can be closed by a large, 
vertical circular cylinder S, enclosing all free surfaces and rigid boundaries and ex- 
tending from the free surface downwards. Since both $6, $, behavelike outgoing waves 
at large distances no extra contribution to (A 20) is obtained from the integral over 
8,. Also, there is no contribution from integrating over S, or over &, k = 1, . .., N, 
k =I= i, k =t= j. Hence it follows from (A 19) that 

I($,,$,) = 0 for all i,j. (A 21) 
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Again the contribution to (A 20) from S, vanishes by virtue of condition (A 3) and 
so from (A 20), (A 11)  

O = SSi+SSj = SS' -$,dS+/ sj $id#, 

showing that 
2, = Z,, for all i,j. 

It is convenient at this stage, following Newman (1976), to introduce the Kochin 
function 

H,(e)  = - k S  (2-$i&) exp{-ik(xcosO+ysinO)+kz}dS. (A 23) 
SBuSI 

Since both $-( and exp { - i k (x  cos 8 + y sin 0)  + kz} are harmonic functions satisfying 
(A 5 ) ,  it  follows from (A 19) that H,(e)  may be written as the negative of the same 
integrand integrated over S,. This enables the far-field behaviour of $, given by 
(A 15) to be used to obtain 

q ( e )  = i i(k~)+S 'lrfi(e') {i + cos (e - s')> exp {im(i - cos (0 - e')} a&, 

H,(e) = i(2n)+fi(e) exp (a im)  

0 

where R = (z2+ ya)+. If, now, R+m, it follows from the method of stationary phase 
that 

so that the Kochin function is directly related to the far-field radiated amplitude of 
the potential $$. 

(A 24) 

Now, by direct substitution, 

with #o given by (A 16). 
We can replace #o by #d - 9,. But the surface integral involving 4, vanishes since 

if, using (A 19), we replace it by the negative of a surface integral over 8, and Sc, we 
find that there is no contribution from either since both $, and #s satisfy conditions 
(A 5 )  and (A 6). 

We are left with 

since both $, and #a satisfy (A 3). 
From (A l l ) ,  then, 

= - og-'A-'qdi(/3). (A 25) 

Bearing in mind (A 24), we see that the volume flux across S, due to the incident plus 
diffracted wave fields is proportional to the far-field behaviour of the radiation 
potential in the opposite direction to that of the incident wave-train, owing to the 
uniform oscillatory pressure distribution across Si. This result corresponds to the 
Haskind relations for rigid-body motions (Newman 1976, equation (45)). 
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Next, we consider 
1 

where * denotes the complex conjugate. Since both +i, +7 satisfy (A 3) we have 

= 2ik-lpqdBi,, 

where (A 11), (A 13), (A 22) have been used. 
Again 

where (A 16) and (A 24) have been used. 
Hence 

in which (A 26) has been used and a simple change of variable of integration made. 
Here Pw = &-1pq8Aa. 

In addition to these three-dimensional results it is also possible to derive important 
two-dimensional reciprocal relations for pressure distributions. Equations (A 2) to 
(A 14) remain the same, but now (A 16) must be replaced by 

Ili - fj*)exp(kzkikz) &B z-f+oo (A 28) 

where the motion takes place in the (2, z) plane. Similarly (A 16) becomes 

and 

and the Kochin function is now only defined for angles B equal to 0 or a. The pre- 
ceding arguments go through with little change and the results in two dimensions 
corresponding to (A 24), (A 25), (A 26) are 

Ji  (:) = -Wg-'A-'qdi 6) , 
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The equation for Hi(0)  in (A 32) corresponds to an incident wave gAw-1 exp [ - ikx + b] 
from x = + 00, with qdi(n) being the corresponding volume flux across 8,. 

It follows from (A 31) and (A 32) that 

showing that in two dimensions also the induced volume flux across S, due to the 
incident and diffracted field is proportional to the far-field amplitude of the radiated 
potential in the direction from which the incident wave comes.’ In  (A 34) qa, is the 
volume flux per unit breadth of the surface pressure. Further relations between the 
properties of the solution $, to the forced radiation problem and $d,  the solution to 
the diffraction problem in both two and three dimensions can also be derived via the 
use of Kochin functions and Green’s theorem. In particular the new relations proved 
by Newman (1976)’ equations (48)’ (49)), carry over to pressure distributions without 
change. Since the method of proof is identical and since they are not needed in the 
present context they are not given here. 

It follows that all of the results relating properties of the forced motion of a rigid 
body in a given mode (Newman 1976), or of a number of independently oscillating 
rigid bodies (Srokosz 1979)’ to the corresponding diffraction problem of the scattering 
of an incident wave field by such a body or bodies, have their counterpart in surface 
pressure distributions. The correspondence follows if the rigid bodies are regarded as 
thin horizontal plates making unit vertical oscillations in the free surface. Although k 
is required to be zero in (A 11) in this case, this does not affect results derived using 
Green’s theorem. The correspondence is completed by noting that the vertical exciting 
force on Si, is just iwpk-Iqai, that is, proportional to the volume flux across S,. 
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